UTILIZATION OF GONGOLASE (*Adansonia digitata* L.) AND GUDDIEM (*Grewia tenax* (forsk) Fiori) AS FUNCTIONAL FOODS IN BREAD AND BISCUIT MAKING

By

Suha Hassan Mohammed Ali Eltoum

B.Sc. Agric. (Honours) (2000)
Faculty of Agriculture
University of Khartoum

Supervisor,

Prof. Abdelmoneim Ibrahim Mustafa

Thesis submitted to the University of Khartoum in partial fulfillment of the requirements for the Degree of Master of Science (Agric).

Department of Food Science and Technology
Faculty of Agriculture
University of Khartoum

July 2004
To my dear father …
who still alive

To my dear mother …
who gave a lot

To my brothers and sisters…

To whom I love
ACKNOWLEDGEMENTS

Great thanks and gratitude to Allah ….

I wish to acknowledge the generosity of all those people who placed their valuable time and knowledge at my disposal. My thanks are especially due to Professor Abdelmoniem Ibrahim Mustafa for his patience in putting me in the way. To Food Science and Technology Department, Faculty of Agriculture, University of Khartoum, instructors and colleagues for their helpful comments. To Food Research Center and Industrial Research and Consultancy Center Staff for their advice and support in several practical stages. To Sudanese Standards and Metrology Organization, Siega Flour Mills and Wheata Flour Mills Laboratories Staff for their permission to complete the research analytical studies. To Babiker Ibrahim Babiker and Asham for their grateful help assistance in baking practice. To Dr. Gamaa Abdel Gadir for his encouragement and support. I am deeply grateful to Dr. Abu Al Gasim Ahmed Yagoub in spending his time and energy to supply valuable facts and opinions for this research.
List of Contents

DEDICATION i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF PLATES viii

ABSTRACT ix

ARABIC ABSTRACT xii

CHAPTER ONE: INTRODUCTION 1

CHAPTER TWO: LITERATURE REVIEW 2

2.1 Functional foods 2

 Functional food components 2

 2.1.1.1 The functionality of dietary fiber 3
 2.1.1.2 The functionality of dietary antioxidants 5
 2.1.1.3 The functionality of some minerals 8
 2.1.2 Cereals as functional foods 12

2.2 Gongolase 15

 Botanical features of the tree 16

 2.2.2 Distribution 17
 2.2.3 Tree requirements 18
 2.2.4 Uses 18
 2.2.4.1 Dietary uses 18
 2.2.4.2 Medicinal uses 21
 2.2.5 Chemical composition of Gongolase 22

2.3 Guddiem 26

 Botanical features 27

 2.3.2 Distribution 27
 2.3.3 Tree requirements 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3.1 Germination</td>
<td>28</td>
</tr>
<tr>
<td>2.3.4 Uses</td>
<td>29</td>
</tr>
<tr>
<td>2.3.4.1 Food uses</td>
<td>29</td>
</tr>
<tr>
<td>2.3.4.2 Medicinal uses</td>
<td>30</td>
</tr>
<tr>
<td>2.3.5 Chemical composition</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Food drying</td>
<td>33</td>
</tr>
<tr>
<td>2.4.1 Freeze drying</td>
<td>34</td>
</tr>
<tr>
<td>2.5 Bread</td>
<td>35</td>
</tr>
<tr>
<td>2.5.1 Bread ingredients</td>
<td>36</td>
</tr>
<tr>
<td>2.5.2 Bread making</td>
<td>36</td>
</tr>
<tr>
<td>2.5.2.1 Straight dough method</td>
<td>37</td>
</tr>
<tr>
<td>2.5.2.1.1 Dough development</td>
<td>37</td>
</tr>
<tr>
<td>2.5.2.1.2 Dough fermentation</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2.1.3 Dividing</td>
<td>39</td>
</tr>
<tr>
<td>2.5.2.1.4 Rounding</td>
<td>40</td>
</tr>
<tr>
<td>2.5.2.1.5 Intermediate proof</td>
<td>40</td>
</tr>
<tr>
<td>2.5.2.1.6 Moulding</td>
<td>41</td>
</tr>
<tr>
<td>2.5.2.1.7 Panning</td>
<td>41</td>
</tr>
<tr>
<td>2.5.2.1.8 Final proof</td>
<td>41</td>
</tr>
<tr>
<td>2.5.2.1.9 Baking</td>
<td>42</td>
</tr>
<tr>
<td>2.5.2.1.10 Cooling</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Biscuit</td>
<td>43</td>
</tr>
<tr>
<td>2.6.1 Biscuit ingredients</td>
<td>44</td>
</tr>
<tr>
<td>2.6.2 Types of mixing</td>
<td>46</td>
</tr>
<tr>
<td>2.6.3 Shaping and baking</td>
<td>48</td>
</tr>
<tr>
<td>CHAPTER THREE: MATERIALS AND METHODS</td>
<td>49</td>
</tr>
<tr>
<td>3.1 Materials</td>
<td>49</td>
</tr>
<tr>
<td>3.2 Methods</td>
<td>49</td>
</tr>
<tr>
<td>3.2.1 Preparation of Guddiem and Gongolase for Processing</td>
<td>49</td>
</tr>
<tr>
<td>3.2.2 Preparation of bread samples</td>
<td>49</td>
</tr>
<tr>
<td>3.2.3 Preparation of biscuit samples</td>
<td>51</td>
</tr>
<tr>
<td>3.2.4 Analytical work</td>
<td>52</td>
</tr>
<tr>
<td>3.2.4.1 Ash content</td>
<td>52</td>
</tr>
<tr>
<td>3.2.4.2 Moisture content</td>
<td>53</td>
</tr>
<tr>
<td>3.2.4.3 Protein content</td>
<td>53</td>
</tr>
<tr>
<td>3.2.4.4 Crude fibre</td>
<td>54</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.2.4.5 Ascorbic acid</td>
<td>55</td>
</tr>
<tr>
<td>3.2.4.6 Minerals</td>
<td>56</td>
</tr>
<tr>
<td>3.2.5 Flour tests</td>
<td>57</td>
</tr>
<tr>
<td>3.2.5.1 Gluten washing test</td>
<td>57</td>
</tr>
<tr>
<td>3.2.5.2 Falling number test</td>
<td>59</td>
</tr>
<tr>
<td>3.2.5.3 Farinograph test</td>
<td>59</td>
</tr>
<tr>
<td>3.2.6 Bread and biscuit physical characteristic tests</td>
<td>61</td>
</tr>
<tr>
<td>3.2.6.1 Bread volume</td>
<td>61</td>
</tr>
<tr>
<td>3.2.6.2 Bread specific volume</td>
<td>61</td>
</tr>
<tr>
<td>3.2.6.3 Biscuit weight</td>
<td>61</td>
</tr>
<tr>
<td>3.2.6.4 Spread ratio</td>
<td>61</td>
</tr>
<tr>
<td>3.2.6.5 Sensory evaluation</td>
<td>62</td>
</tr>
<tr>
<td>3.2.6.6 Statistical analysis</td>
<td>62</td>
</tr>
</tbody>
</table>

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Chemical composition of raw materials 63
4.2 Gluten quantity and quality in Gongolase and Guddiem flour – doughs 67
4.2.1 Wet gluten percentage 67
4.2.2 Dry gluten percentage 69
4.2.3 Gluten index 70
4.3 Falling number of Gongolase and Guddiem/ bread and biscuit flour blends 70
4.4 Rheological properties of doughs prepared from Gongolase and Guddiem composite flours. 72
4.5 Chemical composition of bread and biscuit 92
4.6 Physical characteristics of bread samples containing Gongolase 98
4.6.1 Volume, specific volume 98
4.6.2 Organoleptic assay 101
4.7 Physical characteristics of bread samples containing Guddiem 103
4.7.1 Volume, specific volume 103
4.7.2 Organoleptic assay 106
4.8 Physical characteristics of biscuit samples 106
4.8.1 Weights and spread ratios 106
4.8.2 Organoleptic assay 111
CONCLUSIONS

RECOMMENDATIONS

REFERENCES

LIST OF TABLES

Table	Page
1 Mineral contents of Gongolase fruit from different sources. | 24
2 The chemical composition of raw material used for bread and biscuit making (on dry matter basis). | 64
3 Gluten quantity and quality in Gongolase and Guddiem bread and biscuit flour blends. | 68
4 Falling number of Gongolase and Guddiem bread and biscuit flour blends. | 71
5 Rheological properties of doughs prepared from bread and biscuit flours with Gongolase and Guddiem | 73
6 Chemical composition of bread containing different levels of Gongolase and Guddiem (on dry matter basis) | 93
7 Chemical composition of biscuits containing different levels of Gongolase and Guddiem (on dry matter basis) | 94
8 Volume and specific loaf volume of bread samples containing Gongolase
9 Organoleptic assay of bread containing Gongolase.
10 Volume and specific loaf volume of bread containing Guddiem.
11 Organoleptic assay of bread samples containing Guddiem
12 Weights and spread ratios of biscuit samples containing Gongolase and Guddiem.
13 Organoleptic assay of biscuit samples containing Gongolase
14 Organoleptic assay of biscuit samples containing Guddiem.

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Farinogram of bread flour</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>Farinogram of biscuit flour (I – e F₂)</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Farinogram of biscuit flour (I – e F₂*)</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>Farinogram of bread flour with 5% Gongolase</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>Farinogram of bread flour with 10% Gongolase</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>Farinogram of bread flour with 15% Gongolase</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>Farinogram of bread flour with 5% Guddiem</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>Farinogram of bread flour with 10% Guddiem</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>Farinogram of bread flour with 15% Guddiem</td>
<td>82</td>
</tr>
<tr>
<td>Plate</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>10</td>
<td>Farinogram of biscuit flour with 15% Gongolase</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>Farinogram of biscuit flour with 20% Gongolase</td>
<td>84</td>
</tr>
<tr>
<td>12</td>
<td>Farinogram of biscuit flour with 25% Gongolase</td>
<td>85</td>
</tr>
<tr>
<td>13</td>
<td>Farinogram of biscuit flour with 15% Guddiem</td>
<td>86</td>
</tr>
<tr>
<td>14</td>
<td>Farinogram of biscuit flour with 20% Guddiem</td>
<td>87</td>
</tr>
<tr>
<td>15</td>
<td>Farinogram of biscuit flour with 25% Guddiem</td>
<td>88</td>
</tr>
</tbody>
</table>

LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread samples containing Gongolase.</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Bread samples containing Guddiem.</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>Biscuit samples containing Gongolase.</td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td>Biscuit samples containing Guddiem.</td>
<td>110</td>
</tr>
</tbody>
</table>
ABSTRACT

This study was carried out to assess the nutritional and technological aspects related to incorporation of Gongolase and Guddiem at various ratios in bread and biscuit.

Chemical analysis of the prepared samples of Gongolase and Guddiem showed 6.0 and 4.4% ash, respectively, 2.8 and 7.03% protein, respectively and 6.9% and 1.2% crude fibre in Gongolase and Guddiem, respectively. Iron content was found to be 6 and 7 mg/100g in Gongolase and Guddiem, respectively, Calcium content was found to be 247 and 41 mg/100g, respectively. Potassium was found in high amount in Gongolase, as 2500 mg/100g. Ascorbic acid was 344.3 mg/100g in Gongolase, Guddiem contained 30.3 mg/100g.

Technological parameters assessed for bread and biscuit flours and their substitutions (5, 10 and 15% for bread flour and 15, 20 and 25% for biscuit flours) showed that falling number values were insignificantly affected (P≥ 0.05) either by Gongolase or Guddiem substitution. Wet and dry gluten percentages were significantly decreased (P≤ 0.05) in Gongolase and Guddiem flour blends. Water
absorption of the blends was indicated by the Farinograph to increase in Gongolase flour blends and decrease in Guddiem flour blends. Also the dough stability showed a decrease with incorporation of Gongolase and Guddiem.

Physical characteristics of Gongolase bread showed significant decrease ($P<0.05$) in volume and specific loaf volume values with the increase in Gongolase percentage, while a significant increase ($P<0.05$) was observed in 5% Guddiem bread and a significant decrease ($P<0.05$) was shown in 10 and 15% Guddiem bread. In biscuit incorporation of Gonglase and Guddiem have significantly increased ($P<0.05$) the spread ratios. Sensory evaluation results showed that Guddiem bread and biscuit, blends were highly accepted by the panelists. Gongolase bread and biscuit, blends were not accepted in their higher levels of substitution but only at 5 and 15% Gongolase bread and biscuit, blends, respectively.

Bread and biscuit blends showed a deviation in their chemical composition from the controls. With respect to percentage increase in Gongolase and Guddiem, a significant increase ($P<0.05$) was observed in ash, crude fibre, ascorbic acid, iron, calcium and potassium contents (Gonglase bread and biscuit blends).
ملخص الأطروحة

لا يمكنني قراءة النص العربي بشكل طبيعي. الرجاء تقديم نص قراءة بإحدى اللغات الإنجليزية أو العربية المكتوبة بشكل صحيح للإجابة على السؤال.
(P ≤ 0.05)

\[P(0.05) \]

\[\text{نسبة تفوقية القبيض بسكتة} \]

\[\text{عينات في بينما القنقل} \]

\[\text{نسبة زيادة} \]

\[15% \]

\[\text{المحكم} \]

\[\text{قيمة في القياسية العينة} \]

\[\text{الزيادة} \]

\[\text{والخبز} \]

\[\text{الكيميائي} \]

\[\text{التحليل} \]

\[\text{نتائج أظهرت} \]

\[(P(0.05)) \]

\[\text{العينة وكذللك} \]

\[(mg/100g) \]

\[\text{عانصر} \]

\[\text{منعوري} \]

\[(mg/100g) \]
INTRODUCTION

Food is the cornerstone of good health and enjoyable life. Nowadays the most apparent and irritant health problems are the increasing numbers of those who suffer from cancers and cardiovascular diseases. It was proved that the dietary habits have a major role in the aetiology of these diseases. Anaemia and osteoporosis are examples for dietary related health problems in Sudan and developing countries. With this view, improving our dietary habits and food quality is the aim of nutritionists and health workers all over the world.

Functional foods a new term in food technology world was appeared to solve our health problems through healthy foods. Traditional food, natural foods and new food formulations are all under study as major participants in functional foods. In Sudan local fruits like Gongolase and Guddiem are rich in nutrients which affect health positively. The objectives of this study are to incorporate Gongolase and Guddiem at different levels in breads and biscuits to show the effect of the addition in the nutritive value and the quality parameters of the products.
CONCLUSIONS

Incorporation of Gongolase and Guddiem in bread and biscuit caused a significant increase \((P \leq 0.05)\) in ash, crude fibre, ascorbic acid, iron, calcium and potassium contents (in Gongolase bread and biscuit blends), beside a significant decrease \((P \leq 0.05)\) in protein content.

A 5\% Guddiem substitution in bread showed a significant increase \((P \leq 0.05)\) in volume and specific volume better than the control, beside high preference by panalists.

The increment of Guddiem percentages in biscuit blends had a good influence on the quality of final products (spread ratio and preference).

Increment of Gongolase percentage in bread (5, 10 and 15) caused a depression in volume and specific loaf volume and sensory evaluation scores, but 5\% Gongolase bread blend showed an acceptance from panalists.

Incorporation of Gongolase in biscuit increased the spread ratio, but significant decrease \((P \leq 0.05)\) was occurred with increasing level of substitution. Also significant decrease was shown in sensory evaluation scores with increase level of substitution, but 15\% level of substitution was accepted.

RECOMMENDATIONS

Gongolase and Guddiem can be added to bread and biscuit to enhance their fibre, ascorbic acid, iron and calcium contents, also incorporation of Gongolase will enhance their potassium content.

Guddiem enhances bread and biscuit quality, with 5\% considered suitable range in bread, 15, 20 and 25\% are suitable ranges in biscuit.
Further studies are needed to verify effect of Gongolase low levels as improver in bread making.

Further studies are needed to establish Guddiem and Gongolase uses in other food industries such as jam, jelly and juices.

Further studies are needed to evaluate the dietary role and functional properties of other Sudanese local fruits.

REFERENCES

