STATUS OF MILK AND MEAT HYGIENE IN SUDAN:

REVIEW

Darien Kheder Ali; Hayfa Mohammed Ismail and Atif Elamin Abdelgadir

Department of Preventive Medicine and Public Health, Faculty of Veterinary Medicine, University of Khartoum, B. O. Box 32, Sudan

The status of milk and meat hygiene in Sudan:

The protection of animal diseases and parasites and the risks of food safety and the prevention of their spread is the key to fighting hunger and food insecurity. Nevertheless, most of the recorded diseases transmitted through food are due to contamination of food by the same agents usually present in the early stages of production.

The purpose of this paper is to raise awareness of food research in Sudan, focusing on the health of milk and meat.

The common diseases such as brucellosis and tuberculosis can be transmitted through the use of unclean milk or its products.

This article documents the diseases mentioned above, in addition to the main cause of mastitis, which has a significant impact on general health.

From another perspective, the persistence of biological residues through the use of parasitic fat has also been documented. There has been an attempt in Sudan to apply risk analysis and control the critical points.

For example, weak building structures, water supply failure, weaknesses in farm hygiene, by-products and accumulation of waste, which also contribute to the spread of insects. In Sudan, there is a risk of applying risk analysis and controlling the critical points in the secrets of the heat. On the other hand, contaminated pasture, which reduces the body's ability, adds to the loss of water. There has been a significant improvement in the field of health care through the control of critical points.
نظام تحليل المخاطر والتحكم في النقاط الحرجة هو القضية الأساسية لصحة اللحوم. بالتالي قد تم توثيق البكتيريا المعزولة أثناء تقييم الإجراءات الصحية للحوم في المسالخ، والتي تشمل مختلفة من المكورات العنقودية، البسلس سيرس، اجناس ميكروكوس والإشيرش القولونية. هذه البكتيريا المعزولة ما عدا ممرضه أو انتهازيه مرضية ومن غير المحتمل أن هذه البكتيريا من الأعضاء المصابه في الفحص بعد الذبح ولكن نتيجة لتطبيق مقاييس النظافة أثناء نزع الجلد أو تناول الأعضاء أو الجثة. بالإضافة لذلك، يوجد نوعية من فحوصات لحوم الضأن المعدة للتصدير للتصدير اعتد على الثروة الباقر السطحية التي تعتمد على مستوي الثروة الحرج أيضا ثم مناقشته.

توثق هذه الورقة كتلك للحالات المرضية التي تسبب في إعداد الأكلات. على سبيل المثال الأصابات الطفيلية خاصة الطفيليات المنقولة عن طريق الغذاء مثل الفشيول و الشريطيات. المسببات الباكترية النوعية للتليف الكبري والخر Suns كانت اجناس المكورات العنقودية والمكورات السبجية والكرنيمانباكتريوم والإشيريشا هي المعزولات الأساسية. أما الجثة الكاملة اعتمدت أسس لمرض السل أو الأصابات بالديدان الشريطي والبرقان والتسمم الدموي. بينما الخراجات هي المسببات الأساسية للإعدام الجزيئي للجثة.

اعتمادا على كل الدراسات من المهم لابد أن يراقب توزيع الأكلات واللحوم بواسطة السلطات الصحية والبيطريه لضمان غذاء سليم للمستهلكين. السالمونيلا والميكروبات الأخرى في لحوم الدواجن، الأكلات والطحال محروبات الأمّع المرتبطة بالبيئة أيضا تم توثيقها. المكورات الاتية تم اكتشافها: السالمونيلا، الإشيريشا، اجناس كرتيكوبكتر، اجناس الكروباكتريوم، الكروتزباكتريوم، هافنتايلنا، اجناس الفيبرونيا، اجناس سيرات، اجناس موركوبكتر، هافنتايلنا الديكي واجناس الشقلا. المتصح relevانس هناك اختيارات ضروري لتحسين المراقبة ومكافحة الأمراض المنقولة عن طريق الغذاء باستخدام التقنيات الحديثة.
Abstract

Protection against animal diseases and pests and against food safety threats and preventing their spread is one of the keys to fight hunger, malnutrition and poverty. However, the most reported outbreaks of food borne diseases are due to contamination of foods with zoonotic agents, often during primary production. The aim of this paper is to discuss the status of food safety research in Sudan with special reference to milk and meat hygiene. Zoonotic diseases such as brucellosis and tuberculosis can be transmitted by using unhygienic milk or milk products. This article reviews the above mentioned zoonotic diseases as well as the major pathogens of bovine mastitis which have a great impact on public health. The presence of antibiotic residues using the strain Bacillus subtilis British type ATCC-bb33 as the test organism is also reviewed. An attempt was made in Sudan in order to apply Hazard Analysis Critical Control point (HACCP). For instance, poor building construction, poor water supply, poor farms hygiene as well as milkers and accumulation of dung and animal waste that induced insect spread are also reviewed.

Hazard Analysis Critical Control point (HACCP) is the main issue of meat safety. Therefore, it has been reported that the isolated bacteria during assessment of meat hygiene practices in slaughter houses were Staph. aureus, Staph. xylosus, Staph. lentus, Staph. auricularis, Staph. hominis, Bacillus
cereus, Micrococcus spp and Escherichia.. Furthermore, these isolated bacteria were either non-pathogenic or opportunistic pathogens, and it is unlikely that these bacteria were from infected organs at postmortem examination, but from pitfalls in application of hygienic measures during skinning and handling of organs and carcasses. Moreover, the hygienic quality of mutton intended for export on basis of surface bacterial contamination which depends on critical contamination levels is also discussed.

On the other hand, the paper reviews the pathological conditions, causing liver condemnations. Fore instance, parasitic infections particularly food borne parasites such as fascioliasis, cysticercosis have been recognized. The whole carcasses were mainly condemned due to tuberculosis, cysticercosis, jaundice, pyemia and septicemia, while abscesses were the main causes of partial condemnations of carcasses. Based on all studies, it is important that milk and meat distribution chain should be monitored by health and Veterinary authorities to ensure safe food to consumers.
Salmonella and other pathogens in poultry carcasses, livers, spleens, intestinal contents and related environments are also reviewed. The following isolates were recognized: *Salmonella* spp., *Escherichia coli*, *Citrobacter* spp., *Klebsiella* spp., *Enterobacter hafni*, *Proteus* spp., *Acinetobacter* spp., *Edwardsiella tarda*, *Erwina herbicola*, *Yersinia* spp., *Serratia* spp., *Morganella* spp., *Hafnia alvei* and *Shigella* spp. Overall, there is an urgent need for better monitoring and control food borne disease using new technologies.

Keywords: Food safety, Zoonotic diseases, Milk hygiene, Meat Hygiene, Sudan

Introduction

Animal resources in the Sudan comprise sheep, goat, cattle, camel, poultry and wild-game. Most of the animals in the Sudan are raised on natural pastures by nomadic tribes. In irrigated projects and the area of mechanized farming animals feed on crops byproducts. So, Sudanese animals are almost free from feed additives, hormonal and chemical residues, which give special preference to the Sudanese animal products (Ibrahim et al, 2011). Sudan has one of the harshest climates in the world, with one-third of the total land area being desert, about 40% suitable for grazing and less than one-quarter potentially arable (FAO 1997). The main livestock production sites are located far from the major consumption centers and export outlets.
Economically valuable livestock populations are concentrated in northern, western and southern Kordofan and Darfur accounting for 36% of cattle, 40% of sheep, 36% of goats and 33% of camel populations.

The Veterinary services play a key role in the investigation of such outbreaks all the way back to the farm and in formulating and implementing remedial measures once the source of the outbreak has been identified. This work should be carried out in close collaboration with human and environmental health professionals, analysts, epidemiologists, food producers, processors and traders and others involved. In addition, veterinarians are well equipped to assume important roles in ensuring food safety in other parts of the food chain, for example through the application of HACCP-based controls and other quality assurance systems during food processing and distribution. The Veterinary Services also play an important role in raising the awareness of food producers, processors and other stakeholders of the measures required to assure food safety.

Historically, the Veterinary Services were set up to control livestock diseases at the farm level. There was an emphasis on prevention and control of the major epizootic diseases of livestock and of diseases that could affect man (zoonotic diseases). As countries begin to bring the serious diseases under control, the scope of official animal health services normally increases to address production diseases of livestock, where control leads to more efficient production and/or better quality animal products.
The role of the Veterinary Services has traditionally extended from the farm to the slaughterhouse, where veterinarians have a dual responsibility – epidemiological surveillance of animal diseases and ensuring the safety and suitability of meat. The education and training of veterinarians, which includes both animal health (including zoonoses) and food hygiene components, makes them uniquely equipped to play a central role in ensuring food safety, especially the safety of foods of animal origin. In many countries the role of the Veterinary Services has been extended to include subsequent stages of the food chain in the “farm to fork” continuum Terrestrial Animal Health Code, (2012).

Status of food safety research in Sudan with special reference to milk and meat hygiene:

The obvious benefit of food Safety is to reduce food illnesses and fatalities. The health and hygiene of the cow, The environment in which the cow housed and milked and hygiene during milking and storage equipments, all influence microbial numbers in the milk. Furthermore, milk is consider as good medium for bacteria including pathogenic or non-pathogenic organisms which have a great impact on public health (Ibtisam and Mohboba ,2007). Zoonotic diseases such as brucellosis and tuberculosis can be transmitted by using unhygienic milk or milk products. These diseases have been reported from different parts of Sudan. For instance, Khalid (2006) reported that the prevalence rate of brucellosis in Khartoum state was 23.2% using Rose
Bengal Test. Similarly, a study by Mahmoud (2010) showed that the prevalence of the disease was 24.6%, 23.6, 23% and 5% by Rose Bengal Plate Test, Serum Agglutination Test, ELISA and Milk Ring Test, respectively in West Kordofan State. The disease was also reported in other species (camel, sheep and goat) by Yousif (2010), Rasa (2000), El Sayed Rias (2005), Hatim (2005) and Hayfa (2001). Nahid and Ibtisam (2007) found higher counts of bacteria in milk samples collected from supermarket in Khartoum State and they confirmed the presence of brucellosis. On the other hand, a research work by Nagla (2007) confirmed the Presence of tuberculosis in both cattle and man in Khartoum state using Single Intradermal Comparative Tuberculin Test (SICTT), bacteriological procedures and Nested Polymerase Chain Reaction (nPCR). Some Pathogens such as \textit{Staphylococcus aureus}, \textit{Streptococcus pyogenes} and \textit{E. coli} are considered to be one of the major pathogens that cause mastitis as well as of major public health concern. A number of researchers have isolated the above mentioned pathogens from the raw milk in different parts of the country (Abubaker, 2005; Elias, 2007; IKhtyar, 2010; Nuha, 2000; Rofaida, 2010 and Salah Eldin, 1996).

Regarding, the detection of antibiotics in milk, Abdel Rahman (2001) stated that minimum detectable concentration for Oxytetracycline was 2 \(\mu\)g/ml milk, 48 \(\mu\)g/ml milk for Benzyl penicillin and 25 \(\mu\)g/ml milk for Tylosin. He also explained that all the milk samples collected from bulk milk of the farms and supermarket were free of antibacterial residues, whereas 76.6% of
the samples collected from treated cows with intramammary infusion were positive for antibiotic residues. In contrast, Manal (2005) found that 25% milk samples which were collected from the central market in Khartoum State in summer were positive for antibiotic residues using the strain *Bacillus subtilis* British type ATCC-bb33 as the test organism as well as her results revealed a high positive samples (73.9%) of antibiotic residues in winter.

An attempt was made in Sudan in order to apply Hazard Analysis Critical Control point (HACCP). For instance, a study by Nuha (2009) revealed poor building construction, poor water Supply, poor farms hygiene as well as milkers and accumulation of dung and animal waste that induced insect spread. In the same Study, 38 milk Samples were collected from dairy farms and at subsequent different stage of distribution, the results revealed that the *Staph. aureus* count was between 8.70X10² cfu/ml and 1.98X10⁶ cfu/ml. Moreover, the author stated that there were two critical control points were assigned for milk distribution chain, the first critical control point was to control raw milk production hygiene before distribution, while the second critical control point was controlling of milk temperature. Based on all studies, it is important that milk distribution chain should be monitored by heath and Veterinary authorities to ensure safe milk to consumers.

Hazard Analysis Critical Control point (HACCP) is the main issue of meat safety. Therefore, Ahmed (2004) carried out a study in a slaughterhouse in Khartoum State to assess meat hygiene practices in ten critical control points.
in the cattle slaughter line. The isolated bacteria were *Staph. aureus*, *Staph. xylosus*, *Staph. lentus*, *Staph. auricularis*, *Staph. hominis*, *Bacillus cereus*, *Micrococcus spp* and *Escherichia coli*. The most predominant organisms isolated in the study were *Staphylococcus* species. Moreover, Gihan (2010) studied other ten critical control points in a cattle slaughter line. The isolates were *Staphylococcus caseolyticus* (38.4%), *Staph. caprae* (4.2%), *Staph. epidermidis* (4.9%), *Staph. cohnii* (0.22%), *Staph. schleiferi* (0.11%), *Streptococcus pyogenens* (3.99%), *Micrococcus kristinae* (11.09%), *Mic. varians* (8.65%), *Bacillus cereus* (4.99%), *B. firmus* (0.22%), *Corynebacterium pseudotuberculosis* (0.89%), *Aerococcus* (22.51%), Anaerobic cocci (0.44%), *Kurthia gibsonii* (0.11%). The most predominant organism isolated was the *Staphylococcus spp*. In the two studies *E. coli* or *Salmonella* were not isolated in the critical control points. Amel (2009) evaluated the status of meat hygiene in Assabaloga slaughterhouses in Khartoum State and found that the isolated bacteria were either non-pathogenic or opportunistic pathogens, and it is unlikely that these bacteria were from infected organs at postmortem examination, but from pitfalls in application of hygienic measures during skinning and handling of organs and carcasses. Ibrahim (2006) evaluated the hygienic quality of mutton intended for export at Elkadaro slaughterhouse on basis of surface bacterial contamination. His results revealed higher bacterial counts but no critical contamination levels were recorded.
Pathological conditions, causing liver condemnations were determined by Khalid (2008). He found that fascioliasis, cysticercosis and hydatidosis represent 6% of the liver condemnations. Specific bacterial causes were limited in hepatic necrosis and abscesses which represented 85% of liver condemnations. *Staphylococcus* spp., *Streptococcus* spp., *Corynebacterium* spp, *Enterobacteria* species and *Pasteurella* spp. were the main isolates. Abdalla (1994) investigated the cattle liver condemnation in Khartoum State slaughter houses for four years and found that the main causes of condemnation were non-specific causes (2.33%), fascioliasis (2.29%), schistosomiasis (0.36%), abscesses (0.34%), *Cysticercus bovis* (0.33%) and watery cysts (0.05%). He recommended that the prevention of illegal slaughtering which could help in the control of hydatid cysts and *Cysticercus tenuicollis*. Furthermore, Darien (2008) determined the major causes of condemnations of meat intended for human consumption and found that Fascioliasis was the major cause of condemnation of livers followed by cysticercosis. However, the major causes of bovine hearts condemnations mainly due to adhesions, and cysticercosis, while head condemnations were due to abscesses and cysticercosis. The whole carcasses were mainly condemned due to tuberculosis, cysticercosis, jaundice, pyemia and septicemia, while abscesses were the main causes of partial condemnations of carcasses. Izdihar (1996) studied the prevalence of Salmonella in poultry carcasses, livers, spleens, intestinal contents and related environments in some of ElObeid poultry farms, market and local breeds in El Obied. The
samples belonged to the breeds Bovane, Fiowmy, Hisex, Cross-15, Kuku-1 and Balady. The following 14 bacterial genera were isolated: *Salmonella* spp., *Escherichia coli*, *Citrobacter* spp., *Klebsiella* spp., *Enterobacter hafni*, *Proteus* spp., *Acinetobacter* spp., *Edwardsiella tarda*, *Erwina herbicola*, *Yersinia* spp., *Serratia* spp., *Morganella* spp., *Hafnia alvei* and *Shigella* spp. A total of 45 *Salmonella* strains were isolated.

Recommendation

1. In Sudan most of important milk and meat producing areas have no rigid systems of inspection in the farms or slaughterhouses. Thus, more investigations based on scientific data on the quality, health and safety measures of milk and meat are required.

2. Although the responsibility lies with the manufacturer for ensuring that the foods manufactured are safe and suitable, there is a continuum of effective effort or controls needed by other parties, including milk and meat producers, to assure the safety and suitability of milk and meat products. It is important to recognize that distributors, competent authorities and consumers also have a role in ensuring the safety and suitability of milk and meat and their products.
3. All food businesses should implement a documented food safety management system based on Hazard Analysis Critical Control Point (HACCP) principles. This means food businesses should be aware of all the food safety hazards in their food operations and have system in place to control them.

4. Competent authorities should have in place legislative framework (e.g., acts, regulations, guidelines and requirements), an adequate infrastructure and properly trained inspectors and personnel. For food import and export control systems, reference should be made to the Guidelines for the Design, Operation, Assessment and Accreditation of Food Import and Export Inspection and Certification Systems (CAC/GL 26-1997). Control programmes should focus on auditing relevant documentation that shows that each participant along the chain has met their individual responsibilities to ensure that the end products meet established food safety objectives and/or related objectives and criteria.

5. Many developing countries are poorly equipped to respond to existing and emerging food safety problems. They lack technical and financial resources, an effective institutional framework, trained manpower and sufficient information about the hazards and risks involved. Hence, an attention should be made for this issue.
References

