Original article

Tooth size discrepancy among different malocclusion groups in Sudanese sample

Mecheala A. Ismail BDS, MSc⁠, Amal H. Abuaffan BDS, MSc⁠,*

⁠a Orthodontic Department, Faculty of Dentistry, University of Science and Technology, Omdurman, Sudan
⁠b Faculty of Dentistry, Khartoum University, Sudan

A R T I C L E I N F O
Article history:
Received 19 November 2014
Received in revised form
27 December 2014
Accepted 3 January 2015
Available online xxx

A B S T R A C T
Background: Many difficulties encountered during the finishing-phase of orthodontic treatment arise due to lack of internaxillary tooth-size matching. Bolton ratio is one of the most useful calculations for precise orthodontic diagnosis as it shows whether a correct ratio between dental proportions exists or not.
Objectives: To determine the mesiodistal tooth width in anterior and overall Bolton ratios in normal occlusion and different malocclusion groups in a Sudanese sample and compare to Bolton’s standard.
Materials and methods: The sample consisted of 196 (86 male and 110 female) study models with normal occlusion, Class I, II and III malocclusions, and the age of subject 17–20 years old. Tooth size measurements were performed by electronic digital calipers. Tooth size ratios were analyzed as described by Bolton. The incidence of mesiodistal tooth size discrepancies in the malocclusion groups was analyzed and compared between male and female. The anterior and overall ratios were compared with the ratios Bolton’s study. Results: No significant difference in the anterior and overall ratios of normal occlusion sample when compared to Bolton’s standard. No significant differences were found among gender. ANOVA indicated that no significant difference was determined in the anterior and overall ratios in different malocclusion groups.
Conclusion: Bolton’s values can be used for Sudanese population until a large representative sample is studied.

A C C E P T E D 3 J A N U A R Y 2 0 1 5

© 2015 Published by Elsevier Ltd.

1. Introduction
Correct tooth size relationship between maxillary and mandibular teeth is an important factor to achieve a proper occlusal interdigititation during the final stages of orthodontic treatment [1].

An excellent orthodontic treatment result with optimal occlusion and ideal intercuspation, overjet and overbite is often jeopardized by tooth size discrepancies or problematical tooth anatomy [2]. Differences in tooth size have been associated with different ethnic background and malocclusion [3].

Tooth size discrepancies have conventionally been described as a relative excess of tooth structure in one arch.

* Corresponding author at: Faculty of Dentistry, Khartoum University, P.O. Box 1719, Khartoum, Sudan. Tel.: +249 912696035.
E-mail address: amalabuaffan@yahoo.com (A.H. Abuaffan).
http://dx.doi.org/10.1016/j.odw.2015.01.001
1344-0241/© 2015 Published by Elsevier Ltd.

Please cite this article in press as: Ismail MA, Abuaffan AH. Tooth size discrepancy among different malocclusion groups in Sudanese sample. Orthod Waves (2015), http://dx.doi.org/10.1016/j.odw.2015.01.001
in relation to the other arch [4], and as a disproportion among the size of individual teeth [5]. Specific dimensional relationships must exist between the maxillary and mandibular teeth to ensure proper interdigitation, overbite and overjet and it is important to determine the amount and location of a tooth size discrepancy before starting treatment [6].

Tooth sizes and their inter-arch relationships are fundamental to orthodontic treatment. In the early 1900s Angle [7] included eight variables in occlusion: position, interincisal relation, size of teeth, pattern of teeth, length of teeth, length of cusps, width of arch, arch form, and curve of Spee.

Bolton [1] developed two analyses where by the ratio of mandibular to maxillary tooth material was determined. Fifty-five sets of dental casts were carefully selected and judged to have excellent occlusions. In the overall ratio, the mesiodistal widths of the mandibular 12 teeth were summed and divided it by the sum of the maxillary 12 teeth. For the anterior ratio, summed the mesiodistal widths of the mandibular anterior six teeth (two canine, two central incisors and two lateral incisors) and divided it by the sum of the maxillary anterior six teeth. The obtained results were a means of 91.3% (SD = 1.91) for the overall ratio and 77.2% (SD = 1.65) for the anterior ratio.

The importance of harmony between the maxillary and mandibular teeth brought the attention of many investigators over the years, Crosby and Alexander [3] and Freeman et al. [8] reported that there are 22.9% and 30.6% of orthodontic patients who have anterior tooth size discrepancy. In recent years, much more attention has been paid to tooth size discrepancy, because this may be an obstacle to achieving an ideal result in many cases. Therefore Mclaughlin et al. [9] recommended a seven-key of occlusion ‘correct tooth size’. Dental literature has many studies comparing tooth size discrepancy and different types of malocclusion in different parts of the world and among different ethnic group. However, tooth size discrepancy for Sudanese population remains uncertain. Therefore, the present study aims were (1) to compare tooth-size ratios of the normal occlusion to Bolton’s original sample, (2) to compare Bolton anterior and overall ratios among different occlusion groups and (3) to identify possible sex differences in anterior and overall tooth size ratios.

2. Materials and methods

A descriptive cross-sectional community based study carried out at the Department of Orthodontic University of Khartoum. A total of 196 orthodontic study models (the age of the subject 17–20 years old) were studied. The normal occlusion sample consists of 55 a homogeneous Sudanese dental students (25 male, 30 female). Whereas, the malocclusion models consist of 49 study models Angle’s Class I (23 male, 26 female), 49 Angle’s Class II (22 male, 27 female) and 43 Angle’s Class III (16 male, 27 female).

The inclusion criteria for normal and malocclusion models were:

1. All permanent teeth (first permanent molar right to first permanent molar left) are present.
2. No mesiodistal or occlusal tooth abrasion.
3. No tooth deformity, germination or peg shape lateral incisor.
4. No proximal restoration or reduction.
5. No residual crown or bridge restoration.

The normal occlusion criteria were:

- Class I molar and cuspid relation with good intercuspation.
- 2–3 mm overjet and overbite.
- No previous orthodontic or prosthetic treatment.
- No extensive caries or tooth fillings (Class II and IV restorations).
- No apparent congenital anamoli.

The mesiodistal tooth size for the 12 maxillary and mandibular teeth from the right first permanent molars to the left first permanent molars were measured in the study models by the investigator. The readings were obtained by measuring the greatest width between the contact points of each crown by digital calipers accurate to 0.01 mm which held parallel to the incisal edges or occlusal surfaces. The caliper beaks were inserted from the buccal (labial), and held occlusal parallel to the long axis of the tooth. The beaks were closed until gentle contact with the contact points of the tooth was felt. The reading was recorded at the 0.1 mm level (Fig. 1).

Tooth size ratio between upper and lower teeth was calculated as described by Bolton [1]

\[
\text{Overall ratio (OR)} = \frac{\text{Sum of mesiodistal width of mandibular 12 teeth} \times 100}{\text{Sum of mesiodistal width of maxillary 12 teeth}}
\]

(1)

\[
\text{Anterior ratio (AR)} = \frac{\text{Sum of mesiodistal width of mandibular six teeth}}{\left(3 - 3\right) \times 100%} = \frac{\text{Sum of mesiodistal width of maxillary six teeth}}{3 - 3}
\]

(2)

2.1. Statistical analysis

Frequency tables and descriptive statistic (mean, range and standard deviation) were done for each tooth in normal and malocclusion groups, the anterior and overall ratio and for each group of malocclusion. T test was used to compare normal occlusion and Bolton’s sample and measure the difference between genders. Analysis of variance (ANOVA) was used to compare between Bolton ratios in different malocclusion groups and to compare Bolton ratio between normal occlusion and different malocclusion groups.

Error of the method was calculated by selecting 15 casts randomly by main investigator and re-measured twice within 10 days interval period using Dahlberg’s formula.

3. Results

The result from Dahlberg’s method showed the mean of the measurement error of the mesiodistal tooth size for the individual teeth with of 0.28 mm ± 0.136 mm. The highest value was 0.86 mm and the lowest value was 0.01 mm.

No significant difference between the two sets of measurement was found (p < 0.05).
The sample consisted of 196 orthodontic models. The average overall ratio for all classes combined was 91.86 and for the anterior ratio 77.34 (Table 1).

Table 2 summarizes the means, SDs, standard errors, and ranges of the combined male and female anterior and overall ratios, and the statistical comparisons between our Sudanese normal occlusion sample and Bolton’s subjects.

There was no statistically significant difference in both anterior and overall ratio (p < 0.05).

When the three malocclusion groups were compared in males and females, the results show that the mean overall of Class III > Class I and Class II malocclusion in both males and females. The anterior ratio of Class III > Class I and Class II malocclusion in male while in female Class II > Class I and Class III malocclusion. No statistically significant difference was detected between both sexes (p < 0.05) (Table 3).

Table 4 shows that one-way ANOVA test was then performed between the different malocclusion groups, and no statistical differences were found (p < 0.05).

Comparisons of the overall and anterior ratios between normal occlusion and Class I, II and III malocclusion (with no sex difference) indicate that there was no statistically significant difference between them (Table 4).

4. Discussion

No significant difference was found between the three malocclusion groups as well as between the mean values of Class III when compared with Class I and II malocclusion in the present study. Furthermore, no significant difference was found in the anterior and the overall ratio between Bolton original sample and the present study. This result is online with Norallah et al. [10] whereas, Al-Tamimi and Hashim [11] found no significant difference in Saudi military officers with normal occlusion whereas Alkof and Hashim [12] reported a statistically significant difference.

Uysal and Sari [13] in Turkish population and Paredes et al. [14] in Spanish population concluded that Bolton ratio is not applicable to the samples studied and recommended to have specific ratio for this population.

A difference was observed in Bolton’s standard deviation (SD) when compared with the present study. This may be attributed to the difference in the sample criteria. Bolton’s [1,15] sample was obtained from the models of 55 subjects with perfect Class I occlusions. The population and gender composition of that sample were not specified; the grouping criteria were not explained in detail and it was unclear as to
Table 3 – Mean, standard deviation, t-value and level of significance for the anterior and overall ratios among males and females.

<table>
<thead>
<tr>
<th>Angle classification</th>
<th>Males</th>
<th></th>
<th></th>
<th>Females</th>
<th></th>
<th>t-value</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Overall ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal occlusion</td>
<td>25</td>
<td>91.73</td>
<td>2.9</td>
<td>30</td>
<td>91.25</td>
<td>2.94</td>
<td>0.53</td>
</tr>
<tr>
<td>Class I</td>
<td>23</td>
<td>91.51</td>
<td>3.27</td>
<td>26</td>
<td>91.39</td>
<td>2.54</td>
<td>0.151</td>
</tr>
<tr>
<td>Class II</td>
<td>22</td>
<td>92.22</td>
<td>3.84</td>
<td>27</td>
<td>91.92</td>
<td>2.35</td>
<td>0.337</td>
</tr>
<tr>
<td>Class III</td>
<td>16</td>
<td>93.58</td>
<td>2.71</td>
<td>27</td>
<td>92.02</td>
<td>3.03</td>
<td>1.696</td>
</tr>
<tr>
<td>Anterior ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal occlusion</td>
<td>25</td>
<td>77.73</td>
<td>2.82</td>
<td>30</td>
<td>77.22</td>
<td>3.43</td>
<td>0.55</td>
</tr>
<tr>
<td>Class I</td>
<td>23</td>
<td>77.00</td>
<td>4.65</td>
<td>26</td>
<td>76.55</td>
<td>3.34</td>
<td>0.4</td>
</tr>
<tr>
<td>Class II</td>
<td>22</td>
<td>77.17</td>
<td>6.05</td>
<td>27</td>
<td>77.68</td>
<td>3.44</td>
<td>–0.352</td>
</tr>
<tr>
<td>Class III</td>
<td>16</td>
<td>78.01</td>
<td>4.12</td>
<td>27</td>
<td>77.53</td>
<td>4.24</td>
<td>0.364</td>
</tr>
</tbody>
</table>

SD = standard deviation; NS = non significant (p < 0.05).

Table 4 – ANOVA test and comparison of the overall and anterior ratios between the normal occlusion and different malocclusion groups.

<table>
<thead>
<tr>
<th>Overall ratio</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>Sig</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>55</td>
<td>91.47</td>
<td>2.83</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Class I</td>
<td>49</td>
<td>91.45</td>
<td>2.87</td>
<td>0.046</td>
<td>0.964</td>
<td>0.181</td>
</tr>
<tr>
<td>Class II</td>
<td>49</td>
<td>92.06</td>
<td>3.07</td>
<td>–1.013</td>
<td>0.314</td>
<td>–</td>
</tr>
<tr>
<td>Class III</td>
<td>43</td>
<td>92.60</td>
<td>2.98</td>
<td>–1.922</td>
<td>0.058</td>
<td>–</td>
</tr>
<tr>
<td>Anterior ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>55</td>
<td>77.46</td>
<td>3.16</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Class I</td>
<td>49</td>
<td>76.76</td>
<td>3.97</td>
<td>0.998</td>
<td>0.321</td>
<td>0.96</td>
</tr>
<tr>
<td>Class II</td>
<td>49</td>
<td>77.45</td>
<td>4.74</td>
<td>0.01</td>
<td>0.92</td>
<td>–</td>
</tr>
<tr>
<td>Class III</td>
<td>43</td>
<td>77.71</td>
<td>4.15</td>
<td>–0.335</td>
<td>0.738</td>
<td>–</td>
</tr>
</tbody>
</table>

SD = standard deviation; NS = non significant (p < 0.05).

how many were treated or untreated, and all of which imply a potential selection bias [16].

Anterior and overall ratios obtained for the present Sudanese sample were greater than from Bolton’s American population. This is probably due to racial differences. A similar findings of large anterior or overall ratios compared with Bolton’s were obtained by previous studies of different populations [3,17–20].

Several studies [2,10,14,21] reported no significant differences in the overall ratio and the anterior ratio between genders. In contrast to Alkofide and Hashim [12] when studying Saudis, a significant difference was observed in the anterior ratio between males and females in Class III malocclusion similar to the results reported by Lavelle [22].

Smith et al. [6] results showed a gender difference in the overall ratio among different population, which was in harmony with Araujo and Souki [2] result in 300 Brazilian cases and with Uysal and Sari [13].

Fattahi et al. [23] reported statistically significant differences in the anterior ratio between males and females in Iranian population. According to the results, the gender difference in the tooth size ratio may be population specific.

In the present study the anterior and overall ratios showed no significant differences between the malocclusion groups. This is in agreement with previous studies [16,24–27].

In contrast Fattahi et al. [23] reported that the anterior tooth size discrepancy for Angle Class III individuals was significantly greater than that in Class II and Nie and Lie [19] found significant difference in all the ratios between the malocclusion groups.

In Class III malocclusion group, the overall ratio reported to be the largest of all the malocclusion groups in the present study; which agreed with previous studies carried out in different populations. Sperry et al. [28] concluded that the mandibular tooth size excess was found in Class III malocclusion. The statistically significant trend to larger ratios in Class III patients was also reported by Ta et al. [29] in Southern Chinese, Alkofide and Hashim [12] in Saudis, Araujo and Souki [2] in Brazilians, and Fattahi et al. [23] in Iranians.

No significant difference was observed between normal occlusion and Class I malocclusion in anterior and overall ratios. This is in agreement with Nie and Li [19] and Hashim [30]. Alkofide and Hashim [12] reported a significant difference was found in all malocclusion cases as compared to Bolton’s norms.

The analysis procedure may seem to be time consuming but the benefits seem to balance this minor in convenience by allowing more efficient diagnosis of the problem. Populations differ in inter arch tooth-size relationships, and differences in tooth sizes are not systematic. The population and gender composition of Bolton’s sample were not specified, but it is likely that the selection was biased.

The results or the study led to the following conclusions:

1. Bolton overall ratio in the present study was 91.47 ± 2.83 and the anterior ratio was 77.46 ± 3.16.
2. No statistically significant difference in the anterior and overall ratio from the Bolton standard and the normal occlusion.

3. There is no significant difference in the anterior and overall ratio between different malocclusion groups and between genders.

4. Bolton tooth size discrepancy can be used for Sudanese.

Conflicts of interest

We declare that there is no conflict of interest in this paper.

References

