BOVINE MASTITIS CAUSED BY Bacillus spp. IN KHARTOUM STATE, SUDAN

Reem Rabie Mohammed Salih* and A/ Basit Osman Ahmed

1Department of Clinical Medicine, Faculty of Veterinary Medicine, University of Khartoum

Abstract

This study was conducted in Khartoum state, Sudan, between 2006-2008. Hundered milk samples were collected from cows with clinical mastitis. The percentage of acute mastitis 55% acute mastitis, 44% chronic mastitis and 1% gangrenous mastitis. Milk samples were cultured in Blood agar and MacConkey’s agar for 24 hours at 37º C. The isolation of Bacillus spp. amounted to 74%; these constituted 31% Bacillus coagulans, 11% B. cereus, 9% B. subtilis, 9% B. licheniformis, 4% B. circulans, 3% B. mycoides, 3% B. amyloliquefaciens, 2% B. lentus, and 2% B. megaterium.

Keywords: Bovine, mastitis, bacillus

* P.O. Box 32, Khartoum North, Sudan. E-mail: reema7@yahoo.com
Introduction

The term mastitis refers to the inflammation of the mammary glands regardless of the cause. It is characterized by physical, chemical and usually bacteriological changes in milk associated with pathological changes in the glandular tissue. The disease is responsible for decreased milk production, increased veterinary and treatment costs, increased labour costs and increased culling (Janzen, 1970; Asby et al., 1975; Dobbins, 1977; Blosser, 1979). Antibiotic therapy, without identifying the mastitis causing organisms, is frequently the veterinarian and dairy farmer's first choice of treatment for infected cows. Cases of mastitis that are refractory to any type of treatment occur frequently (Wager, 1981.; and Kirk, 1992).

Most strains of Gram positive spore forming bacteria can cause bovine mastitis like Bacillus spp (Reva et al., 2004; Hong et al., 2005). Some species of genus Bacillus are cause mastitis like B. alvei, B. subtilis, B. megaterium and B. cereus Elgadasi, (2003).

The objective of this research work was to detect the types of Bacillus spp. which can cause mastitis in dairy cattle in Khartoum state- Sudan.

Materials and Methods

The present study was carried out on selected dairy farms located in Khartoum state during the period from 2006 to 2008. The total numbers of examined animal was 500. The standard of milking hygiene in these farms was very poor and preventive measures, such as the use of udder disinfectants, post-milking teat dipping and dry cow therapy, were infrequent. Mastitis was diagnosed when there were visible or palpable signs of udder inflammation change in milk secretions, or through bacteriological examination of milk.

Milk samples were obtained from mastitic udders using sterilized sample bottles, with the usual aseptic precautions being taken. The sample were placed immediately on ice and brought to the Microbiology Laboratory at the department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum. The milk samples were examined
bacteriologically by inoculation onto 5% sheep blood and MacConkey’s agars. Plates were incubated aerobically at 37°C and were examined for bacterial growth after 24-48 hours. Organisms were identified according to standard method of Barrow and Feltham (2003).

Results

The total number of infected udders was hundred. Percentage of different type of mastitis diagnosed during this study were: acute mastitis, 55% (55 mastitic quarters), chronic mastitis, 44% (44 mastitic quarters) and gangrenous mastitis, 1% (1 mastitic quarter).

Bacillus species and *Staphylococcus* species were isolated from 74% and 24% of cases. In one milk sample *Corynebacterium* species was identified and in another *Klebsiella* species was isolated. Nine *Bacillus* species were identified according to biochemical tests shown in Table 1, from cases with acute and chronic mastitis (Fig. 1 and 2). *Bacillus coagulans* constituted 31% of isolates, followed by *B. cereus* 11%, *B. subtilis* 9%, *B. licheniformis* 9%, *B. circulans* 4%, *B. mycoides* 3%, *B. amyloliquefaciens* 3%, *B. lentus* 2%, and *B. megaterium* 2%.
Table (1): The biochemical tests used for identification of the isolated Bacillus spp

<table>
<thead>
<tr>
<th>Test</th>
<th>Species and result of tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Grams stain</td>
<td>+</td>
</tr>
<tr>
<td>Chains of cells</td>
<td>+</td>
</tr>
<tr>
<td>Motility</td>
<td>+</td>
</tr>
<tr>
<td>Spore position</td>
<td>VX</td>
</tr>
<tr>
<td>Swelling of the cell body by spores</td>
<td>-</td>
</tr>
<tr>
<td>Carbohydrate, acid from ASS:</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
</tr>
<tr>
<td>Cellibiose</td>
<td>+</td>
</tr>
<tr>
<td>Galactose</td>
<td>-</td>
</tr>
<tr>
<td>Mannose</td>
<td>-</td>
</tr>
<tr>
<td>Raffinose</td>
<td>-</td>
</tr>
<tr>
<td>Salicin</td>
<td>+</td>
</tr>
<tr>
<td>Xylose</td>
<td>-</td>
</tr>
<tr>
<td>Citrate</td>
<td>+</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
</tr>
<tr>
<td>Indole</td>
<td>-</td>
</tr>
<tr>
<td>V.P</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate</td>
<td>+</td>
</tr>
<tr>
<td>Casien hydrolysis</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase</td>
<td>-</td>
</tr>
</tbody>
</table>
T: Spore terminal.
X: Spore oval
V: sub-terminal.

1- *B. coagulans.*
2- *B. cereus.*
3- *B. subtilis.*
4- *B. licheniformis.*
5- *B. circulans.*
6- *B. lentus.*
7- *B. mycoides.*
8- *B. amyloliquefaciens.*
9- *B. megaterium.*

Fig. 1: The percentage of isolated *Bacillus* spp. from 100 mastitic cows
Reem Rabie Mohammed Salih & A Basit Osman Ahmed

Discussion

Bacillus species are widely distributed in nature and most species exist in soil, water, dust, air, feces and on vegetation. The first case reported by Brown and Scherer (1957) was attributed to the introduction of the organism during treatment of chronic intra-mammary infections when a single plastic syringe was used by a dairy farmer to infuse the quarters with an antibiotic solution. In our study nine species of *Bacillus* were isolated from acute and chronic mastitis, this in agreement with Jan *et al.*, (1998). The percentage of incidence of *Bacillus coagulans* was high and this similar to the findings of Nail *et al.*, (2003). *Bacillus cereus* was also isolated by Nail *et al.*, (2003).
Other species of *Bacillus* were isolated like, *B. licheniformes*, and this is in accord with results of Jones and Turnbull (1981) Logan, (1988), Nail et al., (2003) and Parvanta, (2000). The isolation of *Bacillus alvei*, *B. subtilis*, *B. megaterium* and *B. cereus* during this study is in agreement with Elgadasi, (2003). *B. licheniformis*, *B. amyloliquefaciens*, *B. circulans*, *B. lentus* and *B. mycoides*, to the best of our knowledge are reported here for the first time in bovine mastitis in Sudan.

On conclusion *Bacillus* spp. should be considered as one of the causes of mastitis in dairy farms and further studies are needed in this aspect.

References

